
Patterns and Software:Essential Concepts and Terminology
by Brad Appleton <bradapp@enteract.com>

hey are
e name
d in all

ts and a
ture to
g and
lems and
wledge

pattern
em. The
neering

to as
cesses
re and

e helped

ritten

ciplines,
il to

ling the
to create
of life.
all their

and
ty, the

leness,
what

at
their
Introducing Patterns!
Patterns for software development are one of the latest “hot topics” to emerge from the object-oriented community. T
a literary form of software engineering problem-solving discipline that has its roots in a design movement of the sam
in contemporary architecture, literate programming, and the documentation of best practices and lessons learne
vocations.

One of the first things that any science or engineering discipline must have is a vocabulary for expressing its concep
language for relating them together. The goal of patterns within the software community is to create a body of litera
help software developers resolve common difficult problems encountered throughout all of software engineerin
development. Patterns help create a shared language for communicating insight and experience about these prob
their solutions. Formally codifying these solutions and their relationships lets us successfully capture the body of kno
which comprises our understanding of good architectures that meet the needs of their users. Forming a common
language for conveying the structures and mechanisms of our architectures allows us to intelligibly reason about th
primary focus is not so much on technology as it is on creating a culture to document and support sound engi
architecture and design.

Pattern Origins
Software patterns first became popular with the wide acceptance of the bookDesign Patterns: Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (frequently referred
theGang of Fouror justGoF). Patterns have been used for many different domains ranging from organizations and pro
to teaching and architecture. At present, the software community is using patterns largely for software architectu
design, and (more recently) software development processes and organizations. Other recent books that hav
popularize patterns are:Pattern-Oriented Software Architecture: A System of Patterns(also called thePOSAbook) by
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal (sometimes called theSiemens Gang
of Fiveor justGoV); and the booksPattern Languages of Program DesignandPattern Languages of Program Design 2,
which are selected papers from the first and second conferences onPatterns Languages of Program Design(PLoP or
PLoPD). Many of these books are part of theSoftware Patterns Series from Addison-Wesley.

The current use of the term “pattern” is derived from the writings of the architect Christopher Alexander who has w
several books on the topic as it relates to urban planning and building architecture:

 • Notes on the Synthesis of Form, Harvard University Press, 1964
(hereafter referred to as “[Notes]”)

 • The Oregon Experiment, Oxford University Press, 1975
(hereafter referred to as “[Oregon]”)

 • A Pattern Language: Towns, Buildings, Construction, Oxford University Press, 1977
(hereafter referred to as “[APL] ”)

 • The Timeless Way of Building, Oxford University Press, 1979
(hereafter referred to as “[TTWoB]”)

Although these books are ostensibly about architecture and urban planning, they are applicable to many other dis
including software development. In[Notes], Alexander argues that current architectural methods result in products that fa
meet the real demands and requirements of its users, society and its individuals, and are unsuccessful in fulfil
quintessential purpose of all design and engineering endeavors: to improve the human condition. Alexander wanted
structures that are good for people and have a positive influence on them by improving their comfort and their quality
He concluded that architects must constantly strive to produce work products that better fit and adapt to the needs of
inhabitants and users and their respective communities. In[APL] Alexander describes some timeless design ideas to try
realize these goals. In[TTWoB] Alexander proposes a paradigm for architecture based on three concepts: the quali
gate, and the way:

The Quality (a.k.a. “the Quality Without a Name”)
This is the essence of all things living and useful that imparts unto them qualities such as: freedom, who
completeness, comfort, harmony, habitability, durability, openness, resilience, variability, and adaptability. It is
makes us feel “alive” and “sated”, gives us satisfaction, and ultimately improves the human condition.

The Gate
This is the mechanism that allows us to reachthe quality. It is manifested as a living common pattern language th
permits us to create multiform designs which fulfill multifaceted needs. It is the universal “ether” of patterns and
relationships that permeate a given domain. The gate is the conduit tothe quality.
Last Modified 1/8/98

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 2 of 16

f
sing

to use
rote up

d

ich are

catalog
eated in
, Norm

is now
illside

ut a
, and in
es these
of the
similar
ttern and
y is:

r whole.
The Way (a.k.a. “the Timeless Way”)
Using the way, patterns fromthe gateare applied using a technique ofdifferentiating spacein an ordered sequence o
piecemeal growth: progressively evolving an initial architecture, which then flourishes into a “live” design posses
the quality. Alexander likens it to “a process of unfolding, like the evolution of an embryo, in which the whole precedes

its parts, and actually gives birth to them, by splitting.” ([TTWoB] p. 365). By followingthe way, one may pass through
the gate to reachthe quality.

A Bit of Patterns History
The events described here are related in more detail in theHistoryOfPatterns pages at Ward Cunningham'sWikiWiki Web.

In 1987, Ward Cunningham and Kent Beck were working with Smalltalk and designing user interfaces. They decided
some of Alexander's ideas to develop a small five pattern language for guiding novice Smalltalk programmers. They w
the results and presented them at OOPSLA'87 in Orlando in the paper “Using Pattern Languages for Object-Oriente
Programs”.

Soon afterward, Jim Coplien (more affectionately referred to as “Cope”) began compiling a catalog of C++ idioms (wh
one kind of pattern) and later published them as a book in 1991,Advanced C++ Programming Styles and Idioms.

From 1990 to 1992, various members of the Gang of Four had met one another and had done some work compiling a
of patterns. Discussions of patterns abounded at OOPSLA'91 at a workshop given by Bruce Andersen (which was rep
1992). Many pattern notables participated in these workshops, including Jim Coplien, Doug Lea, Desmond D'Souza
Kerth, Wolfgang Pree, and others.

In August 1993, Kent Beck and Grady Booch sponsored a mountain retreat in Colorado, the first meeting of what
known as the Hillside Group. Another patterns workshop was held at OOPSLA'93 and then in April of 1994, the H
Group met again (this time with Richard Gabriel added to the fold) to plan the first PLoP conference.

Shortly thereafter, the[GoF] Design Patterns book was published, and the rest, is history.

What is a pattern anyway?
In “Understanding and Using Patterns in Software Development”, Dirk Riehle and Heinz Zullighoven give a nice definition
of the term “pattern”, which is very broadly applicable:

A pattern is the abstraction from a concrete form which keeps recurring in specific non-arbitrary contexts.

The above authors point out that, within the software patterns community, the notion of a pattern is “geared toward solving

problems in design.” More specifically, the concrete form which recurs is that of a solution to a recurring problem. B
pattern is more than just a battle-proven solution to a recurring problem. The problem occurs within a certain context
the presence of numerous competing concerns. The proposed solution involves some kind of structure which balanc
concerns, or “forces” in the manner most appropriate for the given context. Using the pattern form, the description
solution tries to capture the essential insight which it embodies, so that others may learn from it, and make use of it in
situations. The pattern is also given a name, which serves as a conceptual handle, to facilitate discussion of the pa
the jewel of information it represents. So a definition which more closely reflects its use within the patterns communit

A pattern is a named nugget of instructive information that captures the essential structure and insight of a

successful family of proven solutions to a recurring problem that arises within a certain context and system of forces.

A slightly more compact definition which might be easier to remember is:

A pattern is a named nugget of insight which conveys the essence of a proven solution to a recurring problem within

a certain context amidst competing concerns.

Patterns are usually concerned with some kind of architecture or organization of constituent parts to produce a greate
Richard Gabriel, author ofPatterns of Software: Tales From the Software Community, provides a clear and concise
definition of the term pattern in thePatterns Definitions section of thePatterns Home Page:

Each pattern is a three-part rule, which expresses a relation between a certain context, a certain system of forces
which occurs repeatedly in that context, and a certain software configuration which allows these forces to resolve
themselves.

As Gabriel explains, Alexander describes it a bit more colorfully in[TTWoB]:

Each pattern is a three-part rule, which expresses a relation between a certain context, a problem, and a solution.

As an element in the world, each pattern is a relationship between a certain context, a certain system of forces which
occurs repeatedly in that context, and a certain spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how this spatial configuration can be used, over
and over again, to resolve the given system of forces, wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the world, and the rule which tells us how to
create that thing, and when we must create it. It is both a process and a thing; both a description of a thing which is
alive, and a description of the process which will generate that thing (p. 247).
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 3 of 16

various

rhyped.
dience.

pattern

n

iew by

before

g system
thout
s

ctures
ging

mpart
daptable
apable

s, each
smaller

w

In Software Patterns, esteemed "patternite" Jim Coplien writes:

I like to relate this definition to dress patterns. I could tell you how to make a dress by specifying the route of a
scissors through a piece of cloth in terms of angles and lengths of cut. Or, I could give you a pattern. Reading the
specification, you would have no idea what was being built or if you had built the right thing when you were
finished. The pattern foreshadows the product: it is the rule for making the thing, but it is also, in many respects, the
thing itself.

So we see that a pattern involves a general description of a recurring solution to a recurring problem replete with
goals and constraints. But a pattern does more than just identify a solution, it also explainswhy the solution is needed! For
better or for worse however, the meteoric rise in popularity of software patterns has caused them to be frequently ove
Patterns have achieved buzzword status: It is immensely popular to use the word “pattern” in order to garner an au
However, not every solution, algorithm, best practice, maxim, or heuristic constitutes a pattern (one or more key
ingredients may be absent). Even if something appears to have all the requisite pattern components, it shouldnot be
considered a pattern until it has been verified to be arecurring phenomenon(typically in at least three systems -- this is ofte
called therule of three). A “pattern in waiting” that is not yet known to recur is sometimes called aproto-pattern . Many
also feel it is inappropriate to decisively call something a pattern until it has undergone some degree of scrutiny or rev
others.

To quote Cope once again (this time from thePatterns Definitions page), a good pattern will do the following:

 • It solves a problem: Patterns capture solutions, not just abstract principles or strategies.

 • It is a proven concept: Patterns capture solutions with a track record, not theories or speculation.

 • The solution isn't obvious: Many problem-solving techniques (such as software design paradigms or
methods) try to derive solutions from first principles. The best patterns generate a solution to a problem
indirectly -- a necessary approach for the most difficult problems of design.

 • It describes a relationship: Patterns don't just describe modules, but describe deeper system structures and
mechanisms.

 • The pattern has a significant human component All software serves human comfort or quality of life; the
best patterns explicitly appeal to aesthetics and utility.

Many examples of software patterns may be found on-line at thePortland Pattern Repository and at thePatterns Home
Page. (If you've never seen a software pattern before, you really should take a moment here to look at a few of them
trying to read too much more of this document.)

Generative Patterns
In [TTWoB], Alexander explains that the most useful patterns aregenerative:

These patterns in our minds are, more or less, mental images of the patterns in the world: they are abstract
representations of the very morphological rules which define the patterns in the world. However, in one respect they
are very different. The patterns in the world merely exist. But the same patterns in our minds are dynamic. They have
force. They are generative. They tell us what to do; they tell us how we shall, or may, generate them; and they tell us
too, that under certain circumstances, we must create them. Each pattern is a rule which describes what you have to
do to generate the entity which it defines. (pp. 181-182)

Generative patterns are active and dynamic: they tell us how to create something and can be observed in the resultin
architectures they helped shape.Non-generativepatterns are static and passive: they describe recurring phenomena wi
necessarily saying how to reproduce them. We should strive to documentgenerativepatterns because they not only show u
the characteristics of good systems, they teach ushow to build them!

For Alexander, however, the “instructive” element is only one facet of what he callsgenerativity. He wants patterns, and
especiallypattern languages, to be capable of generating whole, living structures. Part of the desire to create archite
that emulate life lies in the remarkably unique ability of living things to evolve and adapt to their ever-chan
environments (not only for the sake of individual survival, but also for survival of the species). Alexander wants to i
these same qualities into his architectures. Similarly, in software, good software architectures are all about being a
and resilient to change. So another aspect of generativity is about striving to create “living” architectures which are c
of dynamically adapting to fulfill changing needs and demands.

But there is still more to “generativity” than teaching and adaptability. The successive application of several pattern
encapsulating its own problem and forces, unfolds a larger solution which emerges indirectly as a result of the
solutions. It is the generation of suchemergent behaviorthat appears to be what is meant bygenerativity. In this fashion, a
pattern language should guide its users to generate whole architectures which possessthe quality. This particular aspect of
Alexander's paradigm seems a bit too mystical for some people's tastes.

Anti-Patterns
If a pattern represents a “best practice”, then ananti-pattern represents a “lesson learned”. Initially proposed by Andre
Koenig (a respected C++ pioneer at Bell Labs), anti-patterns come in two varieties:
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 4 of 16

see and

as
s of

bsite and
spects of
ring, and
t popular

to
” with
s, the
ign, or
vels by

ides a
ing the

nships
l design

icular

itectural
a system.
ystem.

ionships.
s
ls of a

t
terms
 1. Those that describe a bad solution to a problem which resulted in a bad situation.
 2. Those that describe how to get out of a bad situation and how to proceed from there to a good solution.

Anti-patterns are valuable because it is often just as important to see and understand bad solutions as it is to
understand good ones. Cope writes (in theAntiPatterns page at theWikiWiki Web):

The study of anti-patterns is an important research activity. The presence of “good” patterns in a successful system is
not enough; you also must show that those patterns are absent in unsuccessful systems. Likewise, it is useful to show
the presence of certain patterns (anti-patterns) in unsuccessful systems, and their absence in successful systems.

Kinds of Patterns
Due to the overwhelming acceptance of the[GoF] book, much of the initial patterns focus in the software community h
been on design patterns. The patterns in the[GoF] book are object-oriented design patterns. There are many other kind
software patterns besides design patterns. Martin Fowler has written a book of Analysis Patterns. There is also a we
mailing list for organizational patterns. Patterns submitted to previous PLoP conferences have encompassed all a
software engineering including: development organization, software process, project planning, requirements enginee
software configuration management (just to name a few). Presently however, design patterns still seem to be the mos
(though organization patterns seem to be gaining momentum).

Kinds of Design Patterns
The [GoF] book defines design patterns as “descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context” and then goes on to say that:
A design pattern names, abstracts, and identifies the key aspects of a common design structure that make it useful for
creating a reusable object-oriented design. The design pattern identifies the participating classes and their instances,
their roles and collaborations, and the distribution of responsibilities. Each design pattern focuses on a particular
object-oriented design problem or issue. It describes when it applies, whether or not in can be applied in view of
other design constraints, and the consequences and trade-offs of its use. Since we must eventually implement our
designs, a design pattern also provides sample ... code to illustrate an implementation. Although design patterns
describe object-oriented designs, they are based on practical solutions that have been implemented in mainstream
object-oriented programming languages

The above description is slanted towardobject-oriented design, but with only minor changes, it could be readily adjusted
describe software design patterns in general (simply remove the words “object-oriented” and replace “class
“component”). Since the[GoF] book was the first (and currently the most popular) of the software design patterns book
term “design pattern” is often used to refer to any pattern which directly addresses issues of software architecture, des
programming implementation. Many choose to make an important distinction between these three conceptual le
categorizing them intoarchitectural patterns, design patterns, andidioms (idioms are sometimes calledcoding patterns).
The authors ofPatterns of Software Architecture[POSA] define these three types of patterns as follows:

Architectural Patterns
An architectural patternexpresses a fundamental structural organization or schema for software systems. It prov
set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organiz
relationships between them.

Design Patterns
A design patternprovides a scheme for refining the subsystems or components of a software system, or the relatio
between them. It describes commonly recurring structure of communicating components that solves a genera
problem within a particular context.

Idioms
An idiom is a low-level pattern specific to a programming language. An idiom describes how to implement part
aspects of components or the relationships between them using the features of the given language.

The difference between these three kinds of patterns are in their corresponding levels of abstraction and detail. Arch
patterns are high-level strategies that concern large-scale components and the global properties and mechanisms of
They have wide-sweeping implications which affect the overall skeletal structure and organization of a software s
Design patterns are medium-scale tactics that flesh out some of the structure and behavior of entities and their relat
They donot influence overall system structure, but instead definemicro-architecturesof subsystems and components. Idiom
are paradigm-specific and language-specific programming techniques that fill in low-level internal or external detai
component's structure or behavior.

In “Understanding and Using Patterns in Software Development”, Riehle and Zullighoven make similar distinctions, bu
seem to partition the different kinds of patterns among analysis, design, and implementation. They define the
conceptual patterns, design patterns, andprogramming patterns as follows:
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 5 of 16

main.

bjects,

patterns
ceptual

age.

idioms.
ral scope
ce or the

ng

contain

and the
n every
actions.
ase it is

ext
roblem”

. This
n is

we

he
pattern
es for

giving
ictures,

void)
Conceptual Patterns
A conceptual pattern is a pattern whose form is described by means of terms and concepts from an application do

Design Patterns
A design patternis a pattern whose form is described by means of software design constructs, for example o
classes, inheritance, aggregation and use-relationship.

Programming Patterns
A programming pattern is a pattern whose form is described by means of programming language constructs.

Using these definitions, conceptual patterns are based upon metaphors in a restricted application domain. Design
complement, or elaborate upon conceptual patterns by delving into the implementation of elements from the con
space. And programming patterns descend further into implementation details using a specific implementation langu

When comparing and contrasting these two sets of definitions, it appears that programming patterns are equivalent to
For the other types of patterns described above, the first set of authors choose to delineate them by their architectu
whereas the latter set of authors choose to delineate them by whether they employ language from the problem spa
solution space.

Components of a Pattern
Alexander says that “every pattern we define must be formulated in the form of a rule which establishes a relationship
between a context, a system of forces which arises in that context, and a configuration, which allows these forces to resolve

themselves in that context.” ([TTWoB] p. 253). Alexander also recommends using pictorial examples: “First there is a picture

which shows an archetypal example of the pattern.” ([APL] p. x). Several different formats have been used for describi
patterns (see the answer to question 10 of Doug Lea'sPatterns-Discussion FAQ for one such description). The pattern
description format used in Alexander's work is called the “Alexandrian form ”. The format used in[GoF] is referred to as
“GoF format” . The section headings of the paragraphs which immediately follow, make up what is called “canonical form”
(sometimes this too is called “Alexandrian form”) and is the format used by[POSA], AGCS, and many others (often with
slight adaptations). Despite the use of these differing pattern formats, it is generally agreed that a pattern should
certain essential components. Regardless of the particular format/headings used (or lack thereof),the following essential
components should be clearly recognizable upon reading a pattern:

Name
It must have a meaningful name. This allows us to use a single word or short phrase to refer to the pattern,
knowledge and structure it describes. It would be very unwieldy to have to describe or even summarize the patter
time we used it in a discussion. Good pattern names form a vocabulary for discussing conceptual abstr
Sometimes a pattern may have more than one commonly used or recognizable name in the literature. In this c
common practice to document these nicknames or synonyms under the heading ofAliasesor Also Known As. Some
pattern forms also provide aclassification of the pattern in addition to its name.

Problem
A statement of the problem which describes itsintent: the goals and objectives it wants to reach within the given cont
and forces. Often the forces oppose these objectives as well as each other (one might think of this as a “wicked p
reminiscent of DeGrace and Stahl, in their bookWicked Problems, Righteous Solutions[DeGrace+Stahl]).

Context
Thepreconditionsunder which the problem and its solution seem to recur, and for which the solution is desirable
tells us the pattern'sapplicability . It can be thought of as the initial configuration of the system before the patter
applied to it.

Forces
A description of the relevantforcesand constraints and how they interact/conflict with one another and with goals
wish to achieve (perhaps with some indication of their priorities). A concrete scenario which serves as themotivation
for the pattern is frequently employed (see alsoExamples). Forces reveal the intricacies of a problem and define t
kinds of trade-offsthat must be considered in the presence of the tension or dissonance they create. A good
description should fully encapsulate all the forces which have an impact upon it. A list of prospective pattern forc
software may be found in the answer to question 11 of Doug Lea'sPatterns-Discussion FAQ.

Solution
Static relationships and dynamic rules describing how to realize the desired outcome. This is often equivalent to
instructions which describe how to construct the necessary work products. The description may encompass p
diagrams and prose which identify the pattern'sstructure, its participants, and theircollaborations, to show how the
problem is solved. The solution should describe not onlystatic structurebut alsodynamic behavior. The static structure
tells us the form and organization of the pattern, but often it is the behavioraldynamics that make the pattern “come
alive”. The description of the pattern's solution may indicate guidelines to keep in mind (as well as pitfalls to a
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 6 of 16

ied to,
pattern's
ay be
end

bes the

nswer to
ng
single

why it
s how
pattern

ardly

. Related
ith the
s to this
ifferent

must) be

ttern by
as

.
wish to

alities.

e crisp,
distinct,
and may

solve a
ns (in

patterns
goal of
when attempting a concreteimplementation of the solution. Sometimes possiblevariants or specializations of the
solution are also described.

Examples
One or more sample applications of the pattern which illustrate: a specific initial context; how the pattern is appl
and transforms, that context; and the resulting context left in its wake. Examples help the reader understand the
use and applicability. Visual examples and analogies can often be especially illuminating. An example m
supplemented by asample implementationto show one way the solution might be realized. Easy-to-compreh
examples from known systems are usually preferred (see alsoKnown Uses).

Resulting Context
The state or configuration of the system after the pattern has been applied, including theconsequences(both good and
bad) of applying the pattern, and other problems and patterns that may arise from the new context. It descri
postconditionsandside-effectsof the pattern. This is sometimes calledresolution of forcesbecause it describes which
forces have been resolved, which ones remain unresolved, and which patterns may now be applicable (see the a
question 12 of Doug Lea'sPatterns-Discussion FAQ for an excellent discussion of resolution of forces). Documenti
the resulting context produced by one pattern helps you correlate it with the initial context of other patterns (a
pattern is often just one step towards accomplishing some larger task or project).

Rationale
A justifying explanation of steps or rules in the pattern, and also of the pattern as a whole in terms of how and
resolves its forces in a particular way to be in alignment with desired goals, principles, and philosophies. It explain
the forces and constraints are orchestrated in concert to achieve a resonant harmony. This tells us how the
actually works, why it works, and why it is “good”. The solution component of a pattern may describe the outw
visible structure and behavior of the pattern, but the rationale is what provides insight into thedeep structuresandkey
mechanisms that are going on beneath the surface of the system.

Related Patterns
The static and dynamic relationships between this pattern and others within the same pattern language or system
patterns often share common forces. They also frequently have an initial or resulting context that is compatible w
resulting or initial context of another pattern. Such patterns might be predecessor patterns whose application lead
pattern; successor patterns whose application follows from this pattern; alternative patterns that describe a d
solution to the same problem but under different forces and constraints; and codependent patterns that may (or
applied simultaneously with this pattern.

Known Uses
Describes known occurrences of the pattern and its application within existing systems. This helps validate a pa
verifying that it is indeed aproven solutionto a recurring problem. Known uses of the pattern can often serve
instructional examples (see alsoExamples).

Although it is not strictly required, good patterns often begin with anAbstract that provides a short summary or overview
This gives readers a clear picture of the pattern and quickly informs them of its relevance to any problems they may
solve (sometimes such a description is called athumbnail sketchof the pattern, or apattern thumbnail). A pattern should
identify its target audience and make clear what it assumes of the reader.

Qualities of a Pattern
In addition to containing the aforementioned components, a well written pattern should exhibit several desirable qu
Doug Lea, in his paper “Christopher Alexander: an Introduction for Object-Oriented Designers” provides a detailed
description of these qualities (which are summarized below):

Encapsulation and Abstraction
Each pattern encapsulates a well-defined problem and its solution in a particular domain. Patterns should provid
clear boundaries that help crystallize the problem space and the solution space by parceling the, into a lattice of
interconnected fragments. They also serve as abstractions which embody domain knowledge and experience,
occur at varying hierarchical levels of conceptual granularity within the domain.

Openness and Variability
Each pattern should be open for extension or parametrization by other patterns so that they may work together to
larger problem. A pattern solution should be also capable of being realized by an infinite variety of implementatio
isolation, as well as in conjunction with other patterns).

Generativity and Composability
Each pattern, once applied, generates a resulting context which matches the initial context of one or more other
in a pattern language. These subsequent patterns may then be applied to progress further toward the final
generating a “whole” or complete overall solution. “Patterns are applied by the means of piecemeal growth. Applying one
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 7 of 16

ot
each

or more
fy an
p/rule

skillful

nly one

olutions
to their
o, just
me paper

ertainly,
nd data
y more
typically

ropriate
ructures

hile

ed to fit

r more
us,
ponents
pattern provides a context for the application of the next pattern.” (from the PLoP'97 Call for Papers) But patterns are n
simply linear in nature, more like fractals in that patterns at a particular level of abstraction and granularity may
lead to or be composed with other patterns at varying levels of scale.

Equilibrium
Each pattern must realize some kind of balance among its forces and constraints. This may be due to one
invariants or heuristics that are used to minimize conflict within the solution space. The invariants often typi
underlying problem solving principle or philosophy for the particular domain, and provide a rationale for each ste
in the pattern.

The aim is that, if well written, each pattern describes a whole that is greater than the sum of its parts, due to
choreography of its elements working together to satisfy all its varying demands.

Patterns, Rules, and Creativity
It is the combined presence ofall these pattern components and qualities that make patternsmorethan just heuristics, rules,
or algorithms. Heuristics and principles frequently participate in the forces and/or rationale of a pattern, but they are o
element of the pattern. Furthermore, as Cope writes in “Software Design Patterns: Common Questions and Answers”:

Rules aren't commonly supported by a rationale, nor put in context. A rule may be part of the solution in a pattern
description, but a rule solution is neither sufficient nor necessary. Patterns aren't designed to be executed or analyzed
by computers, as one might imagine to be true for rules: patterns are to be executed by architects with insight, taste,
experience, and a sense of aesthetics.

A pattern is the process that generates a solution, but it may generate any one of a vast number of variant s
(conceivably without repeating the same solution twice). The human element of patterns is what chiefly contributes
variability and adaptability, and usually requires a greater degree of creativity in their application and combination. S
as the processes of architecture and design are creative endeavors, so too is the application of patterns. In the sa
quoted above, Cope goes on to say:

If design is codified in patterns, does the need for creativity go away? Can we replace high-priced expensive
designers with less sophisticated programmers who are guided by patterns? The answer is that creativity is still
needed to shape the patterns to a given context. Just as a dressmaker tailors a pattern to an individual customer, and
perhaps to a specific event where the dress is to be worn, so designers must be creative when using patterns. Patterns
channel creativity; they neither replace nor constrain it.

Patterns and Algorithms
The previous section about patterns versus rules also applies in large part to algorithms and their data structures. C
algorithms and data structures may be employed in the implementation of one or more patterns, but algorithms a
structures generally solve more fine-grained computational problems like sorting and searching. They are typicall
deterministic than patterns and have less variation among their implementation strategies and tactics. Patterns are
concerned with broader architectural issues that have larger-scale effects.

Of course software developers need to be concerned both with finding appropriate architectures and with finding app
solutions to computational problems. So there will always be a need for patterns as well as for algorithms and data st
(and their use together).

Patterns and Frameworks
One thing closely related to design patterns and object-orientation is asoftware framework:

A software framework is a reusable mini-architecture that provides the generic structure and behavior for a family of

software abstractions, along with a context of memes/metaphors which specifies their collaboration and use within a

given domain.

The framework accomplishes this by hardcoding the context into a kind of “virtual machine” (or “virtual engine”), w
making the abstractions open-ended by designing them with specificplug-points(also calledhot spots). These plug-points
(typically implemented using callbacks, polymorphism, or delegation) enable the framework to be adapted and extend
varying needs, and to be successfully composed with other frameworks. A framework is usuallynota complete application: it
often lacks the necessary application-specific functionality. Instead, an application may be constructed from one o
frameworks by inserting this missing functionality into the plug-and-play “outlets” provided by the frameworks. Tha
framework supplies the infrastructure and mechanisms that execute a policy for interaction between abstract com
with open implementations.

A definition of anobject-oriented software framework is given in[GoF] :

A framework is a set of cooperating classes that make up a reusable design for a specific class of software. A

framework provides architectural guidance by partitioning the design into abstract classes and defining their

responsibilities and collaborations. A developer customizes a framework to a particular application by subclassing

and composing instances of framework classes.
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 8 of 16

ns or
st of the
reason,

pically
f design
patterns
nd
ture:

s there
le in all

pets and
sted the
he use of
n these
ctals).

ies and
doped

ed
proposes
... [a framework] dictates the architecture of your application. It will define the overall structure, its partitioning into

classes and objects, the key responsibilities thereof, how the classes and objects collaborate, and the thread of control.

A framework predefines these design parameters so that you, the application designer/implementer, can concentrate

on the specifics of your application. The framework captures the design decisions that are common to its application

domain. Frameworks thus emphasize design reuse over code reuse, though a framework will usually include concrete

subclasses you can put to work immediately.

The difference between a framework and an ordinary programming library is that a framework employs aninverted flow of
control between itself and its clients. When using a framework, one usually just implements a few callback functio
specializes a few classes, and then invokes a single method or procedure. At this point, the framework does the re
work for you, invoking any necessary client callbacks or methods at the appropriate time and place. For this
frameworks are often said to abide bythe Hollywood Principle (“Don't call us, we'll call you.”) orthe Greyhound
Principle (“Leave the driving to us.”).

Design patterns may be employed both in the design and the documentation of a framework. A single framework ty
encompasses several design patterns. In fact, a framework can be viewed as the implementation of a system o
patterns. Despite the fact that they are related in this manner, it is important to recognize that frameworks and design
are two distinctly separate beasts: a framework isexecutable software, whereas design patterns represent knowledge a
experienceabout software. In this respect, frameworks are of a physical nature, while patterns are of a logical na
frameworks are thephysical realizationof one or more software pattern solutions; patterns are the instructions forhow to
implement those solutions.

The[GoF] book describes the major differences between design patterns and frameworks as follows:

 1. Design patterns are more abstract than frameworks. Frameworks can be embodied in code, but only examples of

patterns can be embodied in code. A strength of frameworks is that they can be written down in programming

languages and not only studied but executed and reused directly. In contrast, design patterns have to be

implemented each time they are used. Design patterns also explain the intent, trade-offs, and consequences of a

design.

 2. Design patterns are smaller architectural elements than frameworks. A typical framework contains several design

patterns but the reverse is never true.

 3. Design patterns are less specialized than frameworks. Frameworks always have a particular application domain. In

contrast, design patterns can be used in nearly any kind of application. While more specialized design patterns

are certainly possible, even these wouldn't dictate an application architecture.

The Quality Without a Name
The “Quality Without A Name” (abbreviated as the acronym “QWAN”) is “ the quality” that imparts incommunicable beauty
and immeasurable value to a structure. It encompasses all of the following:

 • universally recognizable aesthetic beauty and order
 • recursively nested centers of symmetry and balance
 • life and wholeness
 • resilience, adaptability, and durability
 • human comfort and satisfaction
 • emotional and cognitive resonance

Alexander proposes the existence of an objective quality of aesthetic beauty that is universally recognizable. He claim
are certain timeless attributes and properties which are considered beautiful and aesthetically pleasing to all peop
cultures (not just “in the eye of the beholder”). It is these fundamental properties which combine to generate theQWAN, and
which make a structure feel “whole” and “alive”.

Alexander conducted some experiments using configurations of colored beads, and also using the design of car
tapestries. Those results, combined with his own architectural experience with the users of his buildings, sugge
presence of this “objective beauty” was closely tied to the presence of symmetries and subsymmetries that balance t
contrasting space, light, and color to form fields of visual centers. Feelings of beauty and order would increase whe
visual centers unfolded recursively at multiple hierarchical levels of granular scale throughout a design (much like fra
However, if the symmetries are too pure (too perfect or exact), it seems to be less desirable than if slight irregularit
imperfections exist. Apparently some imperfections are not only palatable, but can also be utilitarian (just as
imperfections in precious stones can actually enhance their crystalline structure).

In “The Laws of Architecture from a Physicist's Perspective”, artist and mathematician Nikos A. Salingaros (who has work
closely with Alexander for the last ten years) discusses the rules of beauty and order in past times and, as a result,
the following three laws of architecture:
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 9 of 16

ws,
eaceful

idea of

tural
s. This
d

live,
les
in the

ow

iplines
ersally

ops
e, it
fore the
n and
to the

sign and
esigner
nt feeling

illfully
toward

f scale,
 1. Order on the smallest scale is established by paired contrasting elements, existing in a balanced visual tension.

 2. Large-scale order occurs when every element relates to every other element at a distance in a way that reduces

entropy.

 3. The small scale is connected to the large scale through a linked hierarchy of intermediate scales with scaling

factor approximately equal to e = 2.718.

Salingaros goes on to say that these laws don't governbeautyin architecture, they governlife in architecture: “They are
extracted from physics and mathematics by looking at how nature is put together. I discovered these laws by observing how

fundamental particles come together to form a structure.” He says that when structures conform to these architectural la
those who enter them feel a kind of resonant harmony: an almost emotional connection to the structure which feels p
and nourishing. This connection between life and architecture is due to the thermodynamics of living forms, but the
building structures which possess these intrinsic qualities of living biological organisms comes from Alexander.

In Reengineering the Application Development Process, Michael Beedle tries to succinctly describe theQWAN as
something that:

is created when the attributes in the design makes that design “live”. That is, designs that are flexible, extensible,
adaptable, reusable and have other qualities of living things; except of course self-reproduction and metabolism.

According to this definition, theQWAN is attained when the pattern or pattern language generates a “live” architec
solution; one which emulates the capability of living things to dynamically adapt to fulfill changing needs and demand
is closely related to Alexander's idea ofgenerativity. In “Christopher Alexander: an Introduction for Object-Oriente
Designers”, Doug Lea attempts to describe theQWAN as follows:

... “the quality without a name”, the possession of which is the ultimate goal of any design product. It is impossible to

briefly summarize this. Alexander presents a number of partial synonyms: freedom, life, wholeness, comfortability,

harmony, But no single term or example fully conveys meaning or captures the force of Alexander's writings on the

reader, especially surrounding the human impact of design, the feelings and aesthetics of designers and users, the

need for commitment by developers to obtain and preserve wholeness, and its basis in the objective equilibrium of

form.

So another crucial aspect of theQWAN is the effect it has upon the architecture's inhabitants that makes them feel a
whole, and comfortable. It is this kind of “habitability” that improves user comfort and quality of life (what TQM circ
might refer to as “total customer satisfaction”, and what Tom Peters means by “to thrill and delight” the customer
pursuit of “Wow!” [Peters]).

Of course this “ultimate goal” of achieving theQWAN is very elusive. This particular aspect of patterns seems to borr
concepts from Zen Buddhism, Taoism, and Platonic ideals. There are those who feel the whole idea of theQWAN is just a bit
too whimsical and metaphysical; that it is not scientific or tangible enough to have a place in true engineering disc
(especially if it is something that cannot be measured or quantified). The notion of beauty as something that is univ
objective can be a trifle hard for some to swallow.

But in many respects, an individual's sense of theQWAN is also about cognitive judgement. Every master designer devel
their own highly honed intuition which is borne from extensive experience. Although this “intuition” may be subjectiv
can be uncannily accurate and give the designer an almost instinctive sense of what will work and what wont (even be
measures are brought to bear to try and verify it). This stems from the designer being intimate with the desig
internalizing it at a visceral level, almost to the point of becoming an inhabitant whose sensory network is “plugged-in”
system. If a pattern can impart to its readers and users, this same “plugged-in” feeling of being connected to the de
deeply comprehending it, then in theory it will impart to the reader the same cognitive feeling of its aptness that the d
experienced. If a pattern succeeds in this attempt, then all who see and use it will supposedly experience the resona
of beauty and harmony that theQWAN is supposed to evoke.

Pattern Languages
A collection of patterns forms a vocabulary for understanding and communicating ideas. Such a collection may be sk
woven together into a cohesive “whole” that reveals the inherent structures and relationships of its constituent parts
fulfilling a shared objective. This is what Alexander calls apattern language. If a pattern is a recurring solution to a problem
in a context given by some forces, then a pattern language is a collective of such solutions which, at every level o
work together to resolve a complex problem into an orderly solution according to a pre-defined goal. In thePatterns
Definitions section of thePatterns Home Page, Cope defines a pattern language as follows:

A pattern language defines a collection of patterns and the rules to combine them into an architectural style. Pattern

languages describe software frameworks or families of related systems.

Cope provides a slightly different definition, in “Software Design Patterns: Common Questions and Answers”:

A pattern language is a structured collection of patterns that build on each other to transform needs and constraints

into an architecture.
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 10 of 16

d when
idelines
a lexicon
u will).
ssive

at is not

elated
lp us

een
In other
which
form an

entors to
versity.

d to a

ning an
more

ment,

nd the
ental/
Cope then goes on to say that:

Good pattern languages guide the designer toward useful architectures and away from architectures whose literary
analogies are gibberish or unartful writing. Good architectures are durable, functional, and aesthetically pleasing,
and a good combination of patterns can balance the forces on a system to strive towards these three goals. A good
pattern language gives designers freedom to express themselves and to tailor the solution to the particular needs of
the context where the patterns are applied.

Unlike a mere pattern compilation or catalog, a pattern language includes rules and guidelines which explain how an
to apply its patterns to solve a problem which is larger than any individual pattern can solve. These rules and gu
suggest the order and granularity for applying each pattern in the language. A pattern language may be regarded as
of patterns plus a grammar that defines how to weave them together into valid sentences (or artful tapestries if yo
Ideally, good pattern languages aregenerative, capable of generating all the possible sentences from a rich and expre
pattern vocabulary.

A pattern language forms a gestalt in which each of its patterns collaborate to solve a more fundamental problem th
explicitly addressed by any individual pattern. This helps a pattern language to achieve anorganic order, which Alexander
describes in[Oregon] as “the kind of order that is achieved when there is a perfect balance between the needs of the parts and

the needs of the whole.” So in a sense, a pattern language is like an ecosystem of patterns, all of which are inherently r
at some level. This “ecological quality” of pattern languages contributes to their “wholeness” and their ability to he
generate “live” architectures” possessing theQWAN.

ThroughoutThe Timeless Way of Building, Alexander remarks on what a pattern language truly embodies:

 • “Thus, as in the case of natural languages, the pattern language is generative. It not only tells us the rules of
arrangement, but shows us how to construct arrangements -- as many as we want -- which satisfy the
rules.” (p. 186)

 • “A pattern language gives each person who uses it, the power to create an infinite variety of new and
unique buildings, just as his ordinary language gives him the power to create an infinite variety of
sentences.” (p. 167)

 • “The structure of the language is created by the network of connections among individual patterns: and the
language lives, or not, as a totality, to the degree these patterns form a whole.” (p. 305)

 • “Each pattern then, depends both on the smaller patterns it contains and on the larger patterns within which
it is contained.” (p. 312)

 • “The language is a good one, capable of making something whole, when it is morphologically and
functionally complete.” (p. 316)

Michael Beedle, author ofReengineering the Application Development Process, likens the effects of using pattern
languages to the generation ofemergent behaviors: spontaneously recurring patterns of dense local interaction betw
entities, resulting in dynamic, self-organizing systems that are adaptive, open, and capable of multi-scale effects.
words, pattern languages provide a dynamic process for the orderly resolution of problems within their domain
indirectly leads to the resolution of a much broader problem. The patterns and rules in a pattern language combine to
architectural style. In this manner, pattern languages guide system analysts, architects, designers, and implem
produce workable systems that solve common organizational and development problems at all levels of scale and di

Piecemeal Growth
In [Oregon], Alexander describes how his pattern language and corresponding “timeless way” method was applie
planning project for the University of Oregon. He explains the principle oforganic order in which “Planning and

construction will be guided by a process which allows the whole to emerge gradually from local acts.” He then explains the
process ofpiecemeal growthas one which is based on the idea of repair as opposed to replacement: rather than desig
architecture to replace an existing one, and which will eventually be replaced itself, Alexander prescribes a
evolutionary approach which gradually unfolds a complete structure from an initial foundation by continual embellish
modification, improvement, and repair. He refers to the “design for replacement” approach aslarge lump developmentand
compares it with piecemeal growth as follows:

Large lump development hinges on a view of the environment which is static and discontinuous; piecemeal growth
hinges on a view of the environment which is dynamic and continuous.... According to the large lump point of view,
each act of design or construction is an isolated event which creates an isolated building -- “perfect” at the time of
construction, and then abandoned by its builders and designers forever. According to the piecemeal point of view,
every environment is changing and growing all the time, in order to keep its use in balance; and the quality of the
environment is a kind of semi-stable equilibrium in the flux of time.... Large lump development is based on the idea
of replacement. Piecemeal growth is based on the idea of repair.

Those familiar with software development lifecycles might see some similarities between large lump development a
waterfall model, and between piecemeal growth, and the spiral models which involve prototyping and increm
evolutionary development (or what Booch calls “round-trip gestalt design” [Booch]).
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 11 of 16

e whole
the user

cessive

e and

ides
between

ion of
rity, it
ned and
tent and
ons of

beyond
adds

ges form
attern
t, ideally,

tions to
es can be

be about
kind of
t, forces,
er). This
ave
mission

ant gaps

es are not
may, in
whole

e), but
ers to:
oking for

wn the
ieces of
ortant

ll!
e all the
one that

ut the
urces for

you can
age of
The relationship between patterns and piecemeal growth is that pattern languages are intended to grow and evolv
architectures through this process of piecemeal growth. The various sequences in which a pattern language instructs
in the application of the patterns therein should unfold a complete architecture which gradually emerges from the suc
application of individual patterns in the appropriate order.

Pattern Catalogs and Systems
The authors of[POSA] have classified different kinds of pattern collections that possess varying degrees of structur
interaction into pattern catalogs, systems, and languages:

Pattern Catalogs
A pattern catalogis a collection of related patterns (perhaps only loosely or informally related). It typically subdiv
the patterns into at least a small number of broad categories and may include some amount of cross referencing
patterns.

Pattern Systems
A pattern systemis a cohesive set of related patterns which work together to support the construction and evolut
whole architectures. Not only is it organized into related groups and subgroups at multiple levels of granula
describes the many interrelationships between the patterns and their groupings and how they may be combi
composed to solve more complex problems. The patterns in a pattern system should all be described in a consis
uniform style and need to cover a sufficiently broad base of problems and solutions to enable significant porti
complete architectures to be built.

A pattern catalog adds a modicum of structure and organization to a pattern collection, but doesn't usually go very far
showing only the most outwardly visible structure and relationships (if in fact it shows any of them). A pattern system
deep structure, rich pattern interaction, and uniformity to a pattern catalog. Both pattern systems and pattern langua
coherent sets of tightly interwoven patterns for describing and solving problems in a particular domain. But a p
language adds robustness, comprehensiveness, and wholeness to a pattern system. The primary difference is tha
pattern languages are computationally complete, showing all possible combinations of patterns and their varia
produce complete architectures. In practice however, the difference between pattern systems and pattern languag
extremely difficult to ascertain.

While a pattern system may be a cohesive collection of patterns about a very broad topic, a pattern language has to
more than just a “broad topic”. A pattern language ultimately corresponds to a single-minded collective that forms a
“mega pattern” or “super pattern” in that the entire language possesses an underlying, shared problem and its contex
solution, resulting context, and rationale (which each pattern in the language addresses at some level or anoth
coherence of purpose is what gives the pattern language a sense of closure. A pattern system does not necessarily hall of
these pattern components. It may focus on an equally broad or narrow topic, but it may not necessarily have a clear
or agenda (and may result in many relationships between patterns being harder to find), or it leaves several import
unfilled in the problem space (and hence may not attain overall resolution or closure).

But perhaps the most important difference between pattern languages and pattern systems is that pattern languag
created all at once. They evolve from pattern systems through the process of piecemeal growth (and a pattern system
turn, evolve from a pattern catalog in a similar manner). So just as pattern languages help to incrementally grow
architectures, pattern systems may serve to incrementally grow into whole pattern languages.

Writing Patterns
Writing good patterns is very difficult. Patterns should not only provide facts (like a reference manual or user's guid
should also tell a story which captures the experience they are trying to convey. A pattern should help its us
comprehend existing systems; customize systems to fit user needs; and construct new systems. The process of lo
patterns to document is calledpattern mining (or sometimesreverse-architecting).

How do you know a pattern when you come across one? The answer is you don't always know. You may jot do
beginnings of some things you think are patterns, but it may turn out that they aren't patterns at all, or they are only p
patterns, or simply good principles or rules of thumb that may form part of the rationale of a particular pattern. It is imp
to remember that a solution in which no forces are present is not a pattern.

The best way to learn how to recognize and document useful patterns is by learning from others who have done it wePick
up several books and articles which describe patterns (don't choose just one) and try and see if you can recogniz
necessary pattern components and desirable qualities that were mentioned earlier in this paper. When you see
appeals to you, ask yourself why it is good. If you see one you don't like, try and figure out exactly what it is abo
pattern that leaves you unsatisfied. Read as much as you can, and try to learn from the masters. Numerous reso
learning more about patterns are given near the end of this paper. Most importantly,be introspective about everything you
read! Examine how it is meaningful to you and how it will help you accomplish future goals.

After you have been exposed to a wealth of pattern literature, choose one of the various pattern formats and see if
flesh out some of your earlier ideas for things you thought might be patterns. If you are trying to compose a langu
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 12 of 16

les that

be found

ages.

ubmitted

ic

n

re

thin the
lopment
software
software
ly codify

provide
. It may
explicit

y times in
lems in

opment
require
east of
nstruct

is the

ntended

cades
oring on
and

97. In

develop a
fields of
patterns, start by examining the forces and context of each pattern and try to identify any simple underlying princip
seem to help organize the patterns together into useful configurations.

Further assistance for those who are courageous enough to undertake writing a pattern, or a pattern language, may
in Ward Cunningham’s “Tips for Writing Pattern Languages”, and in Gerard Meszaros’ and Jim Doble’s “A Pattern
Language for Pattern Writing”. Both of these papers are indispensable resources for writing patterns and pattern langu

How do the experts decide what makes a good pattern? The PLoP conferences have several criteria which they feel s
pattern papers should meet. These are as follows (summarized from Buschmann et. al. inPattern-Oriented Software
Architecture):

 • Focus on practicability: Patterns should describeproven solutions to recurring problems rather than the latest scientif
results.

 • Aggressive disregard of originality: Pattern writers do not need to be the original inventor or discoverer of the
solutions that they document.

 • Non-anonymous review: Pattern submissions areshepherded rather than reviewed. The shepherd contacts the patter
author(s) and discusses with them how the patterns might be clarified or improved upon.

 • Writer's workshops instead of presentations: Rather than being presented by the individual authors, the patterns a
discussed inwriter's workshops: an open forum where all attending seek to improve the patterns presented by
discussing what they like about the patterns as well as other areas in which they are lacking.

 • Careful editing: The pattern authors have the opportunity to incorporate all the comments and insights during the
shepherding and writer's workshops before presenting the patterns in their finished form.

Pattern Futures
The current popularity of software patterns has spurred numerous activities to broaden their use and support wi
software development community. There are groups of people using patterns to document their software deve
processes and engineering handbooks in the form of a pattern language. Several of the leading object-oriented
design notations/methods have added support for the modeling and representation of design patterns. Many
development tools and environments have added similar support. Some research projects are attempting to formal
design patterns for the purposes of generating source code. Commercial software libraries are being developed which
reusable implementations of several well known design patterns (Java provides a few of these in its standard library)
not be long before some programming languages introduce special syntax for representing design patterns as
programming constructs.

There is speculation that patterns will some day replace computer programmers. Such speculation has occurred man
the past regarding various other “new” technologies. The languages and tools that will be used to solve software prob
the future may advance far beyond what is presently available (much like programming languages and devel
environments have evolved since the days of programming machine-code on punch cards), but they will still
developers with similarly evolved skills and wisdom to use them effectively. As long as software developers keep abr
emerging software concepts and technologies, there will always be a need for them to skillfully and creatively co
useful software solutions using these new tools and languages.

So while the ability to codify patterns as generic software components may be important, even more important
knowledge of how/when to apply and combine patterns, in conjunction with theability to use a shared vocabulary of pattern
namesto communicate the nuggets of insight they represent. Because patterns capture knowledge that is primarily i
for humans, it is thesocial impact of patterns which largely shapes their technological impact.

What about Christopher Alexander?His writings on patterns and pattern languages were composed more than two de
before they became popular within the software community! During these past few decades, Alexander has been lab
a new book entitledThe Nature of Order which significantly advances his earlier ideas about patterns, architecture,
beauty. This new work will span four volumes, some of which are tentatively planned for publication by the end of 19
describing the book, one of its editors, Nikos A. Salingaros writes:

Alexander develops a comprehensive theory of how matter comes together to form coherent structures. Paralleling,
but not copying, recent results from complexity theory, he argues that the same laws apply to all structures in the
universe; from atoms, to crystals, to living forms, to galaxies.

This book encompasses all the concepts and theories discussed in Alexander's earlier works and extends them to
much broader paradigm for creating architectures. It discusses a new concept of wholeness that emerges from
centers (which are constructed from small pattern languages) withuniversal recursive properties, and from dynamic
processes calledsequences(which relate the order in which to visit centers and apply patterns) that employstructure-
preserving transformations. Alexander presents his new architectural paradigm with concepts like:

 • the degrees of life and how life comes from wholeness
 • the fifteen fundamental properties of wholeness and life
 • the principle of unfolding wholeness
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 13 of 16

a work

s” and
cording
between
chedule,
le in the

nexpert
ftware
must be
s). Once
acilitate
, designs,

dge
ent of

r

 • structure-preserving transformations
 • the fundamental process for creating life
 • achieving comfortable, habitable living spaces
 • defining and designing essential centers for working out structure
 • the emergence of living order and the face of god

Many in the patterns community are awaiting publication of this book with enormous anticipation as it promises to be
of monumental significance for all walks of architecture.

Concluding Remarks
All mature engineering disciplines draw from a collective compendium of time-honored, battle-tested “best practice
“lessons learned” for solving known engineering problems. Great engineers don't just design their products strictly ac
to the principles of math and science. They must adapt their solutions to make optimal trade-offs and compromises
known solutions, principles, and constraints to meet the ever-increasing and ever-changing demands of cost, s
quality, and customer needs. Patterns help bring order out of chaos by identifying what is constant and recognizab
midst of such incessant change. In this sense, patterns appear to resemblestrange attractors, the convergence of dynamically
interacting components into stable configurations, that recur all throughout successful systems.

Patterns represent distilled experience which, through their assimilation, convey expert insight and knowledge to i
developers. They help forge the foundation of a shared architectural vision, and collective of styles. If we want so
development to evolve into a mature engineering discipline, then these proven “best practices” and “lessons learned”
aggressively and formally documented, compiled, scrutinized, and widely disseminated as patterns (and anti-pattern
a solution has been expressed in pattern form, it may then be applied and reapplied to other contexts, and f
widespread reuse across the entire spectrum of software engineering artifacts such as: analyses, architectures
implementations, algorithms and data structures, tests, plans, and organization structures.

Patterns arenot a “silver bullet”! Theyare extremely valuable tools for capturing and communicating acquired knowle
and experience to improve software quality and productivity by addressing fundamental issues in the developm
software. By employing these tools we are better suited to meet challenges like “communication of architectural knowledge
among developers; accommodating a new design paradigm or architectural style; resolving nonfunctional forces such as
reusability, portability, and extensibility; and avoiding development traps and pitfalls that have traditionally been learned

only by experience.” (quoted from thePLoP'96 Call for Papers.)

Perhaps the final remarks fromPattern-Oriented Software Architecture best describe the significance of patterns fo
software:

Patterns expose knowledge about software construction that has been gained by many experts over many years. All
work on patterns should therefore focus on making this precious resource widely available. Every software
developer should be able to use patterns effectively when building software systems. When this is achieved, we will
be able to celebrate the human intelligence that patterns reflect, both in each individual pattern and in all patterns in
their entirety.

Further Information
Some good URLs for learning more about patterns are:

 • Doug Lea's “Patterns-Discussion FAQ”
http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

 • Doug Lea's paper, “Christopher Alexander: An Introduction for Object-Oriented Designers”
 http://gee.cs.oswego.edu/dl/ca/ca/ca.html

 • Dirk Riehle and Heinz Zullighoven's “Understanding and Using Patterns in Software Development”
http://www.ubs.com/webclub/ubilab/publications/e_rie96c.htm

 • Doug Schmidt and Ralph Johnson's introduction to the October 1996,CACM Special Issue on patterns
http://www.cs.wustl.edu/~schmidt/CACM-editorial.html

 • Excerpts from Jim Coplien's SIGS management briefingSoftware Patterns
http://www.sigs.com/books/wp_patterns_5pp.html

 • Jim Coplien's paper “Software Design Patterns: Common Questions and Answers”
ftp://st.cs.uiuc.edu/pub/patterns/papers/PatQandA.ps

 • John Vlissides' article “Patterns: The Top 10 Misconceptions” in the March 1997Object Magazine Online
http://www.sigs.com/publications/docs/objm/9703/9703.vlissides.html

 • The “History of Patterns” on Ward Cunningham'sWikiWiki Web
http://c2.com/cgi-bin/wiki?HistoryOfPatterns
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 14 of 16

ent

embers
f Jim
ichael
about
g were

ger for
 • “Pattern Definitions” from thePatterns Home page
http://hillside.net/patterns/definition.htm

 • Steve Berczuk's “Finding solutions through pattern languages”
http://world.std.com/~berczuk/pubs/Dec94ieee.html

 • “Some Notes on Christopher Alexander”, by Nikos A. Salingaros
http://www.math.utsa.edu/sphere/salingar/Chris.text.html

 • “Design Patterns: Elements of Reusable Architectures”, by Linda Rising
http://www.agcs.com/techpapers/patterns.htm

 • Brian Kurotsuchi's Design Patterns Tutorial
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/patterns/

 • Ravi Palepu's “Modelling the Real World: Application of Patterns to Reduce Complexity in the Software Developm
Process”

http://www.scs.carleton.ca/~palepu/pat.html
 • Doug Schmidt's “Pattern Writer's Workshop Tutorial”

 http://www.cs.wustl.edu/~schmidt/writersworkshop.html
 • Ward Cunningham’s “Tips for Writing Pattern Languages” on theWikiWiki Web

http://c2.com/cgi/wiki?TipsForWritingPatternLanguages
 • “A Pattern Language for Pattern Writing” by Gerard Meszaros and Jim Doble

http://hillside.net/patterns/Writing/pattern_index.html
 • Richard Gabriel's article “Developing Patterns Studies” from InfoWorld on-line

 http://www.infoworld.com/cgi-bin/displayArchives.pl?dt_iwe05-97_72.htm
 • A “Patterns BookList” on theWikiWiki Web

http://c2.com/cgi/wiki?BookList

Other more general patterns resources on the web are:

 • ThePatterns Home Page
http://hillside.net/patterns/

 • ThePortland Pattern Repository
 http://www.c2.com/pp

 • Ward Cunningham's wonderfulWikiWiki Web
http://c2.com/cgi/wiki?WelcomeVisitors

 • Patlets FrontPage - a Patterns Database
http://hillside.net/patterns/patlet/?FrontPage

 • Cetus Links: Patterns, hundreds of links to pattern-related pages
http://www.objenv.com/cetus/oo_patterns.html

 • Brad Appleton'sSoftware Patterns Links
 http://www.enteract.com/~bradapp/links/sw-pats.html

 • AG Communications Systems Patterns Pages
http://www.agcs.com/patterns

 • TheOrganizationPatterns FrontPage
 http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns

 • The “Design Patterns Mailing Lists by thread”
http://iamwww.unibe.ch:80/~fcglib/WWW/OnlineDoku/archive/DesignPatterns/

 • The “Organization-patterns Mail Archive by thread”
http://www.bell-labs.com/~cope/Patterns/organization-patterns-archive/

Acknowledgements
This paper is not an original work, but rather a synthesis of material from many knowledgeable and well respected m
of the patterns community. Much of what was written here is either adapted or quoted directly from the writings o
Coplien, Doug Lea, the “Gang of Four” and the Siemens “Gang of Five”, and of course Christopher Alexander. M
Beedle provided me a wealth of material both from the writings of Alexander and from his soon to be published book
using patterns for re-engineering development processes. His numerous comments and those of Linda Risin
immensely helpful. Thanks also to John Vlissides for his helpful comments, and to Desmond D'Souza and Tim Ottin
sharing their thoughts about frameworks.
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 15 of 16

first

Science
ther
process

d

5

th;
About the Author
Brad Appleton lives in the Chicago area and is a senior software engineer with Motorola AIEG in Northbrook, IL. His
exposure to software patterns was Peter Coad's article in the September 1992 issue ofCommunications of the ACM. He has
been trying to “keep up” with the patterns movement ever since. Brad received his BS in Mathematics and Computer
from the University of Michigan in 1988, and is currently working towards an MS in Software Engineering. His o
professional interests include object-oriented design, software configuration management, and software
improvement. He may be reached via e-mail at<bradapp@enteract.com>.

References
[APL]

A Pattern Language: Towns, Buildings, Construction; Christopher Alexander; Oxford University Press, 1977

[Beck+Cunningham]
Using Pattern Languages for Object-Oriented Programs; Kent Beck and Ward Cunningham;OOPSLA 1987 Workshop on
the Specification and Design for Object-Oriented Programming, September 1987

[Beedle]
Re-Engineering the Application Development Process; Michael Beedle; SIGS Books, to be published in 1998

[Booch]
Object-Oriented Analysis and Design with Applications (2nd edition); Grady Booch; Addison-Wesley, 1992

[Cope:92]
Advanced C++ Programming Styles and Idioms; James O. Coplien; Addison-Wesley, 1992

[Cope:96]
Software Patterns; James O. Coplien; SIGS Books, August 1996

[Cope:Q+A]
Software Design Patterns: Common Questions and Answers; James O. Coplien;
ftp://st.cs.uiuc.edu/pub/patterns/papers/PatQandA.ps

[DeGrace+Stahl]
Wicked Problems, Righteous Solutions: A Catalogue of Modern Software Engineering Paradigms;
Peter DeGrace, Leslie Hulet Stahl; Prentice Hall, 1990

[Fowler]
Analysis Patterns: Reusable Object Models; Martin Fowler; Addison-Wesley, 1997

[Gabriel]
Patterns of Software: Tales From the Software Community; Richard Gabriel; Oxford University Press, 1996

[GoF]
Design Patterns: Elements of Reusable Object-Oriented Software; Erich Gamma, Richard Helm,Ralph Johnson, an
John Vlissides; Addison Wesley; October 1994

[Lea:FAQ]
Patterns-Discussion FAQ;Doug Lea;http://g.oswego.edu/dl/pd-FAQ/pd-FAQ.html

[Lea]
Christopher Alexander: An Introduction for Object-Oriented Designers;Doug Lea
http://gee.cs.oswego.edu/dl/ca/ca/ca.html

[Nature]
The Nature of Order; Christopher Alexander; Oxford University Press, not yet published

[Notes]
Notes on the Synthesis of Form; Christopher Alexander; Harvard University Press, 1964

[Oregon]
The Oregon Experiment; Christopher Alexander; Oxford University Press, 1975

[Peters]
The Pursuit of Wow!; Every Person's Guide to Topsy-Turvy Times; Tom Peters; Vintage Books, 1994

[PLoP-1]
Pattern Languages of Program Design; Edited by James O. Coplien and Douglas C. Schmidt; Addison-Wesley, 199

[PLoP-2]
Pattern Languages of Program Design 2; Edited by John M. Vlissides, James O. Coplien, and Norman L. Ker
Addison-Wesley, 1996
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

last modified 1/8/98 Patterns and Software: Essential Concepts and Terminology page 16 of 16

rt,

4

[POSA]
Pattern-Oriented Software Architecture - A System of Patterns; Frank Buschmann, Regine Meunier, Hans Rohne
Peter Sommerlad, Michael Stal; Wiley and Sons, 1996

[Riehle]
Understanding and Using Patterns in Software Development; Dirk Riehle and Heinz Zullighoven;Theory and Practice of
Object Systems, Vol. 2, No. 1, 1996, pp. 3-13.

[Salingaros]
The Laws of Architecture From a Physicist's Perspective; Nikos A. Salingaros;Physics Essays Volume 8, Number
(December 1995), pages 638-643

[TTWoB]
The Timeless Way of Building; Christopher Alexander; Oxford University Press, 1979
by Brad Appleton <bradapp@enteract.com> http://www.enteract.com/~bradapp/docs/patterns-intro.html

	Introducing Patterns!
	Pattern Origins
	The Quality (a.k.a. “the Quality Without a Name”)
	The Gate
	The Way (a.k.a. “the Timeless Way”)

	A Bit of Patterns History
	What is a pattern anyway?
	Generative Patterns
	Anti-Patterns
	Kinds of Patterns
	Kinds of Design Patterns
	Architectural Patterns
	Design Patterns
	Idioms
	Conceptual Patterns
	Design Patterns
	Programming Patterns

	Components of a Pattern
	Name
	Problem
	Context
	Forces
	Solution
	Examples
	Resulting Context
	Rationale
	Related Patterns
	Known Uses

	Qualities of a Pattern
	Encapsulation and Abstraction
	Openness and Variability
	Generativity and Composability
	Equilibrium

	Patterns, Rules, and Creativity
	Patterns and Algorithms
	Patterns and Frameworks
	The Quality Without a Name
	Pattern Languages
	Piecemeal Growth
	Pattern Catalogs and Systems
	Pattern Catalogs
	Pattern Systems

	Writing Patterns
	Pattern Futures
	Concluding Remarks
	Further Information
	Acknowledgements
	About the Author
	References

